Using High-Frequency Entropy to Forecast Bitcoin’s Daily Value at Risk
نویسندگان
چکیده
منابع مشابه
Forecasting Value-at-Risk Using High-Frequency Information
in the prediction of quantiles of daily Standard & Poor’s 500 (S&P 500) returns we consider how to use high-frequency 5-minute data. We examine methods that incorporate the high frequency information either indirectly, through combining forecasts (using forecasts generated from returns sampled at different intraday interval), or directly, through combining high frequency information into one mo...
متن کاملusing mgarch to estimate value at risk
in this paper we compared multivariate garch models toestimate value-at-risk. we used a portfolio of weekly indexesincluding tedpix, klse, xu100 during ten years. to estimatevalue-at-risk, first we estimated ccc, dcc of engle, dcc of tseand tsui, dynamic equi correlation models by oxmetrics. then,optimum lags were estimated by minimizing the information criteria.to estimate var, the models accu...
متن کاملhigh volatility, thick tails and extreme value theory in value at risk estimation: the case of liability insurance in iran insurance company
در این بررسی ابتدا به بررسی ماهیت توزیع خسارات پرداخته میشود و از روش نظریه مقادیر نهایی برای بدست آوردن برآورد ارزش در معرض خطر برای خسارات روزانه بیمه مسئولیت شرکت بیمه ایران استفاده میشود. سپس کارایی نظریه مقدار نهایی در برآورد ارزش در معرض خطر با کارایی سایر روشهای واریانس ، کواریانس و روش شبیه سازی تاریخی مورد مقایسه قرار میگیرد. نتایج این بررسی نشان میدهند که توزیع ،garch شناخته شده مدل...
15 صفحه اولValue at Risk Estimation using the Kappa Distribution with Application to Insurance Data
The heavy tailed distributions have mostly been used for modeling the financial data. The kappa distribution has higher peak and heavier tail than the normal distribution. In this paper, we consider the estimation of the three unknown parameters of a Kappa distribution for evaluating the value at risk measure. The value at risk (VaR) as a quantile of a distribution is one of the import...
متن کاملA New Approach of Using Lévy Processes for Determining High-Frequency Value at Risk Predictions
A new approach for using Lévy processes to compute value at risk (VaR) using high-frequency data is presented in this paper. The approach is a parametric model using an ARMA(1,1)-GARCH(1,1) model where the tail events are modeled using the fractional Lévy stable noise and Lévy stable distribution. Using high-frequency data for the German DAX Index, the VaR estimates from this approach are compa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2019
ISSN: 1099-4300
DOI: 10.3390/e21020102